A Variational Inequality for Discontinuous Solutions of Degenerate Parabolic Equations
نویسندگان
چکیده
The Beltrami framework for image processing and analysis introduces a non-linear parabolic problem, called in this context the Beltrami flow. We study in the framework for functions of bounded variation, the well-posedness of the Beltrami flow in the one-dimensional case. We prove existence and uniqueness of the weak solution using lower semi-continuity results for convex functions of measures. The solution is defined via a variational inequality, following Temam’s technique for the evolution problem associated with the minimal surface equation. Una desigualdad variacional para soluciones discontinuas de ecuaciones parabólicas degeneradas Resumen. El contexto de Beltrami para el proceso y análisis de imágenes introduce un problema parabólico no lineal denominado “flujo de Beltrami”. En este artı́culo panorámico mostramos como el flujo de Beltrami unidimensional está bien planteado en el marco de las funciones de variación acotada. Obtenemos la existencia y unicidad de soluciones débiles usando resultados sobre la semicontinuidad inferior para funciones convexas de medidas. Definimos la solución va una inecuacin variacional, siguiendo la técnica de Temam para el problema de evolución asociado a la ecuación de superficies mı́nimas.
منابع مشابه
A note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملApproximation of parabolic equations using the Wasserstein metric
We illustrate how some interesting new variational principles can be used for the numerical approximation of solutions to certain (possibly degenerate) parabolic partial diflerential équations. One remarkable feature of the algorithms presented hère is that derivatives do not enter into the variational principleSj so, for example, discontinuous approximations may be used for approximating the h...
متن کاملStudy of weak solutions for parabolic variational inequalities with nonstandard growth conditions
In this paper, we study the degenerate parabolic variational inequality problem in a bounded domain. First, the weak solutions of the variational inequality are defined. Second, the existence and uniqueness of the solutions in the weak sense are proved by using the penalty method and the reduction method.
متن کاملHarnack inequality and continuity of solutions to quasi-linear degenerate parabolic equations with coefficients from Kato-type classes
For a general class of divergence type quasi-linear degenerate parabolic equations with measurable coefficients and lower order terms from non-linear Kato-type classes, we prove local boundedness and continuity of solutions, and the intrinsic Harnack inequality for positive solutions.
متن کاملIntroduction to fully nonlinear parabolic equations
These notes contain a short exposition of selected results about parabolic equations: Schauder estimates for linear parabolic equations with Hölder coefficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations. MSC. 35K55, 35D40, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005